Wyższa Szkoła Zarządzania i Bankowości
LECTURESNOTEBOOKSPACKAGES
3 Population Dynamics
3.4 Phase Trajectories and Limit Cycles

1 Introduction to Simulation and Modeling
2 Discrete Medeling (L-Systems)
3 Population Dynamics
3.1 Fibonacci Growth
3.2 Malthusian Growth
3.3 Logistic Growth
3.4 Phase Trajectories and Limit Cycles
3.5 Lotka-Volterra Predator-Prey Populations
3.6 Gilpins model and transition Chaos
3.7 Additional Exercises
4 Number Representation and Error Propagation
5 Modeling with Random Numbers
6 Heat Transfer in a Rod (Connection Mathematica and C: MathLink)
7 Special Topics in Stochastic Finance
8 Appendix: Introduction to Mathematica
9 Population Dynamics in Vensim®PLE
     
 

III.4 Phase Trajectories and Limit Cycles

In this section the concept of phase trajectories is explored. The following two equations describe a so-called  limit cycle:

[Graphics:Images/nb3_gr_116.gif]=+y + [Graphics:Images/nb3_gr_117.gif]

[Graphics:Images/nb3_gr_118.gif]=-x + [Graphics:Images/nb3_gr_119.gif]

With initial conditions: [Graphics:Images/nb3_gr_120.gif] and [Graphics:Images/nb3_gr_121.gif]  and [Graphics:Images/nb3_gr_122.gif].
In the following  the system will be studied over a period of 10 seconds with the following sets of initial conditions:

[Graphics:Images/nb3_gr_123.gif]
[Graphics:Images/nb3_gr_124.gif]
[Graphics:Images/nb3_gr_125.gif]
[Graphics:Images/nb3_gr_126.gif]
[Graphics:Images/nb3_gr_127.gif]

Let's start  by setting up the equations:

[Graphics:Images/nb3_gr_128.gif]

Next  a series of parametric plots is produced for each initial condition, showing the trajectories of [Graphics:Images/nb3_gr_129.gif] and [Graphics:Images/nb3_gr_130.gif] for different [Graphics:Images/nb3_gr_131.gif].

[Graphics:Images/nb3_gr_132.gif]
[Graphics:Images/nb3_gr_133.gif]
[Graphics:Images/nb3_gr_134.gif]
[Graphics:Images/nb3_gr_135.gif]
[Graphics:Images/nb3_gr_136.gif]

Finally   all the results  are plotted  together in one graph:

[Graphics:Images/nb3_gr_137.gif]

[Graphics:Images/nb3_gr_138.gif]

OPTIONAL
III.4.1a
Explain in your own words the results obtained in the graphs above. What will happen if you choose two initial conditions very close to one another, inside and outside the limit cycle. What happens in point (0,0)?


 
     
  Lectures | Notebooks | Packages

 
  Copyright © 2003 Wyższa Szkoła Zarządzania i Bankowości. Wszystkie prawa zastrzeżone
webmaster@wszib.edu.pl