Wyższa Szkoła Zarządzania i Bankowości
LECTURESNOTEBOOKSPACKAGES
3 Population Dynamics
3.2 Malthusian Growth

1 Introduction to Simulation and Modeling
2 Discrete Medeling (L-Systems)
3 Population Dynamics
3.1 Fibonacci Growth
3.2 Malthusian Growth
3.3 Logistic Growth
3.4 Phase Trajectories and Limit Cycles
3.5 Lotka-Volterra Predator-Prey Populations
3.6 Gilpins model and transition Chaos
3.7 Additional Exercises
4 Number Representation and Error Propagation
5 Modeling with Random Numbers
6 Heat Transfer in a Rod (Connection Mathematica and C: MathLink)
7 Special Topics in Stochastic Finance
8 Appendix: Introduction to Mathematica
9 Population Dynamics in Vensim®PLE
     
 

III.2 Malthusian Growth

Thomas Malthus (1766-1834) is generally credited with the idea that populations tend to grow exponentially.  Exponential growth (or decay) occurs whenever the rate of change over time of a variable is directly proportional to the value of the variable.  To see this in Mathematica, we use  [Graphics:Images/nb3_gr_68.gif] as the constant of proportionality.

[Graphics:Images/nb3_gr_69.gif]
[Graphics:Images/nb3_gr_70.gif]

We can plot several solution curves at once to see the behavior of the solutions.

[Graphics:Images/nb3_gr_71.gif]

[Graphics:Images/nb3_gr_72.gif]

ADVANCED
III.2.1a
Experiment with different [Graphics:Images/nb3_gr_73.gif] and [Graphics:Images/nb3_gr_74.gif] values. Give an interpretation of [Graphics:Images/nb3_gr_75.gif] and [Graphics:Images/nb3_gr_76.gif] in terms of population growth (e.g. birth rate and death rate).


 
     
  Lectures | Notebooks | Packages

 
  Copyright © 2003 Wyższa Szkoła Zarządzania i Bankowości. Wszystkie prawa zastrzeżone
webmaster@wszib.edu.pl